A class of exact solutions for anharmonically coupled oscillators

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1983 J. Phys. A: Math. Gen. 16 L553
(http://iopscience.iop.org/0305-4470/16/15/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 06:31

Please note that terms and conditions apply.

LETTER TO THE EDITOR

A class of exact solutions for anharmonically coupled oscillators

J Makarewicz
Institute of Chemistry, A Mickiewicz University, 60-780 Poznan, Poland

Received 11 July 1983

Abstract

We study the solutions of the two-dimensional Schrödinger equation for anharmonically coupled oscillators. We obtain a finite set of exact solutions of the form $\psi(x, y)=$ polynomial $(x, y) \exp ($ polynomial $(x, y))$ provided that certain constraints on the potential parameters are satisfied.

The anharmonically coupled oscillator (ACO) models are used in studies concerned with approximate methods of solving the multidimensional Schrödinger equation. The first detailed study of the properties of the perturbation series for the energy of the ACO model with the potential $V(x, y)=\frac{1}{2}\left(\lambda_{1} x^{2}+\lambda_{2} y^{2}\right)+\eta(x y)^{2}+\xi_{1} x^{4}+\xi_{2} y^{4}$ was performed by Bender and Wu (1973a, b). The numerical analysis of the same model with $\xi_{i}=0$ is due to Caswell and Danos (1970). They proved the accuracy of the Born-Oppenheimer method in the separation of two coupled molecular vibrations. The models with coupling terms $x y^{2}$ (Hamiltonian of Barbanis (1966)) and $x\left(y^{2}+\nu x^{2}\right)$ (Hamiltonian of Hénon and Heiles (1964)) were considered to establish the accuracy of the self-consistent field (Bowman 1978, Cohen et al 1979, Tobin and Bowman 1980, Christoffel and Bowman 1982) and adiabatic Born-Oppenheimer method (Zhi-Ding et al 1982). These models were also intensively used to study dynamics of the AcO system with semiclassical methods (Eastes and Marcus 1974, Noid and Marcus 1975, 1977, Noid et al 1979, 1980, Sorbie 1976, Sorbie and Handy 1977, Weisman and Jortner 1981a, b, 1982a, b).

The exact solutions of the Schrödinger equation for ACO models could serve as a useful device for the testing of practically oriented approximations, but till now such solutions have not been presented.

Recently, only for some anharmonic oscillators such solutions were found of the form $\psi(x)=P(x) \exp (R(x)$), where $P(x)$ and $R(x)$ are polynomials (Singh et al 1978, 1979, Flessas and Das 1980, Magyari 1981, Znojil 1981, 1982).

In this letter we propose the ACO models which have exact solutions of the analogous form

$$
\psi(x, y)=P(x, y) \exp (R(x, y))
$$

where $P(x, y)$ and $R(x, y)$ are polynomials of two variables. We also discuss some interesting properties of these solutions.

We shall be interested in solutions of the Schrödinger equation

$$
\begin{equation*}
(H(x, y)-E) \psi(x, y)=0 \tag{1}
\end{equation*}
$$

with the Hamiltonian
$2 H(x, y)=-\left(\partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}\right)+\lambda_{1} x^{2}+\lambda_{2} y^{2}+2 \eta \nu(x y)^{2}+\eta^{2}(x y)^{2}\left(x^{2}+y^{2}\right)$.
This Hamiltonian is similar to that considered by Caswell and Danos (1970) if $\nu \gg \eta$, but is more realistic owing to the inclusion of the higher-order coupling term proportional to η^{2}. For $\eta<0$ a potential with this term can have two or four minima. The potential with such properties has been used to describe pseudorotation in cyclic molecules (Carreira 1979).

Let us look for the solutions of equation (1) of the form

$$
\begin{equation*}
\psi(x, y)=P(x, y) \exp \left[-\frac{1}{2}\left(\omega_{1} x^{2}+\omega_{2} y^{2}+\eta x^{2} y^{2}\right)\right] \tag{3}
\end{equation*}
$$

where

$$
P(x, y)=\sum_{n_{1}, n_{2}} a_{n_{1}, n_{2}} x^{2 n_{1}+p_{1}} y^{2 n_{2}+p_{2}}
$$

$p_{i}=0(1)$ for states of even (odd) parity with respect to x or y. We prove that $P(x, y)$ is a polynomial of the x and y variables if certain constraints on the parameters ω_{i}, λ_{i} and η are satisfied.

Substituting equation (3) into (1) we obtain difference equations for the unknown coefficients $a_{n_{1}, n_{2}}$ which for $\nu=\omega_{1}+\omega_{2}$ take the simple form
$a_{n_{1}-1, n_{2}} B_{1}\left(n_{2}\right)+a_{n_{1}, n_{2}-1} B_{2}\left(n_{1}\right)+a_{n_{1}+1, n_{2}} C_{1}\left(n_{1}\right)+a_{n_{1}, n_{2}+1} C_{2}\left(n_{2}\right)=A_{n_{1}, n_{2}} a_{n_{1}, n_{2}}$
where

$$
\begin{align*}
& B_{i}\left(n_{j}\right)=\eta\left[\gamma_{i}-\left(4 n_{j}+2 p_{i}+1\right)\right], \quad i \neq j=1,2, \tag{5a}\\
& C_{i}\left(n_{i}\right)=\left(2 n_{i}+p_{i}+2\right)\left(2 n_{i}+p_{i}+1\right), \tag{5b}\\
& A_{n_{1}, n_{2}}=\left(4 n_{1}+2 p_{1}+1\right) \omega_{1}+\left(4 n_{2}+2 p_{2}+1\right) \omega_{2}-2 E, \tag{5c}\\
& \gamma_{i}=\left(\omega_{i}^{2}-\lambda_{i}\right) / \eta
\end{align*}
$$

The $P(x, y)$ is a polynomial of N_{1} th degree with respect to x and N_{2}^{\prime} th degree with respect to y if there exist such N_{2} and N_{1}^{\prime} that $a_{N_{1}, N_{2}} \neq 0$ and $a_{N_{1}, N_{2}^{\prime}} \neq 0$ and $a_{n_{1}, n_{2}}=0$ for every $n_{1}>N_{1}$ and $n_{2}>N_{2}^{\prime}$.

Let us choose the index N_{2} for which $a_{N_{1}, N_{2}} \neq 0$. In reality only one such N_{2} exists, for if there is another $\tilde{N}_{2} \neq N_{2}$, then taking in equation (4) $\left(n_{1}, n_{2}\right)=\left(N_{1}+1, N_{2}\right)$ we would obtain the condition

$$
a_{N_{1}, N_{2}} B_{1}\left(N_{2}\right)=0
$$

which means

$$
\begin{equation*}
B_{1}\left(N_{2}\right)=0 \tag{6a}
\end{equation*}
$$

and taking $\left(n_{1}, n_{2}\right)=\left(N_{1}+1, \tilde{N}_{2}\right)$ we would obtain

$$
a_{N_{1}, \tilde{N}_{2}} \boldsymbol{B}_{1}\left(\tilde{\boldsymbol{N}}_{2}\right)=0
$$

implying

$$
\begin{equation*}
B_{1}\left(\tilde{N}_{2}\right)=0 \tag{6b}
\end{equation*}
$$

It is clear now that equations ($6 a, b$) can be both fulfilled if and only if $N_{2}=\tilde{N}_{2}$, so we draw the conclusion that only one N_{2} exists. From this fact we can easily deduce
that non-zero coefficients with the maximum n_{1} for a given $N_{2} \pm k$ are

$$
\begin{array}{ll}
a_{N_{1}-k, N_{2}+k} & \text { for } k=0,1, \ldots, N_{2}^{\prime}-N_{2}, \\
a_{N_{1}-k, N_{2}-k} & \text { for } k=0,1, \ldots, N_{2} .
\end{array}
$$

In a similar way we prove that there exists only one index N_{1}^{\prime} for which $a_{N_{1}, N_{2}} B_{2}\left(N_{1}^{\prime}\right)=$ 0 and $B_{2}\left(N_{1}^{\prime}\right)=0$. The non-zero coefficients with the maximum n_{2} for a given $N_{1}^{\prime} \pm k$ are

$$
\begin{array}{ll}
a_{N_{1}^{\prime}+k, N_{2}^{\prime}-k} & \text { for } k=0,1, \ldots, N_{1}-N_{1}^{\prime} \\
a_{N_{1}-k, N_{2}^{\prime}-k} & \text { for } k=0,1, \ldots, N_{1}^{\prime} .
\end{array}
$$

To make our considerations easily understandable we present in figure 1 the graph of the polynomial P in which open (full) circles denote zero (non-zero) $a_{n_{1}, n_{2}}$ coefficients. The crossed circles stand for the critical coefficients $a_{N_{1}, N_{2}}$ and $a_{N_{i} N_{2}^{\prime}}$ which fulfil the equations (see equations (4))

$$
\begin{array}{ll}
A_{N_{1}, N_{2}} a_{N_{1}, N_{2}}=0, & A_{N_{1}, N_{2}}=0, \\
A_{N_{i}, N_{2}^{\prime}} a_{N_{i}, N_{2}^{\prime}}=0, & A_{N_{i}, N_{2}^{\prime}}=0 . \tag{7}
\end{array}
$$

Figure 1. The graph of the polynomial $P(x, y)$ and the path generating all the points of $a_{n, m} \neq 0$.

Relations (7) impose the constraints on the energy E and frequencies ω_{1}, ω_{2}, thus providing for the existence of the solutions of equations (4). Let us note that the equations

$$
B_{1}\left(N_{2}\right)=B_{2}\left(N_{1}^{\prime}\right)=0
$$

relate the parameters λ_{i} and η and the frequencies ω_{i} through the two conditions

$$
\begin{equation*}
\gamma_{1}=4 N_{2}+2 p_{2}+1, \quad \gamma_{2}=4 N_{1}^{\prime}+2 p_{1}+1 \tag{8}
\end{equation*}
$$

Thus, only one degree of freedom of these parameters remains.
Equations (4) can now be easily solved with the use of the topology of the graph P in the following way. Let us determine a path in the graph such that starting from $a_{N_{1}-N_{2}+1,0}$ and moving along the path we generate subsequently, from recurrence
relations (4), all the points of $a_{n^{\prime} m} \neq 0$. Instead of describing verbally an algorithm defining this path we present it in figure 1 , from which we can clearly see that it can always be found. All points lying on the path are uniquely determined by $a_{N_{1}-N_{2}, 0}$. However, f points ($f=N_{1}+N_{2}-1$ for $N_{i}>2$) exist which do not lie on the path, which means that in general f equations from equations (4) will not be fulfilled.

The proper choice of λ_{i}, η parameters can only guarantee that one of the f equations will be fulfilled since there is only one degree of freedom in the parametric space. So, the necessary but not sufficient condition for the existence of non-trivial solutions of equations (4) is $f \leqslant 1$. This condition means that only the polynomials for which $N_{1} \leqslant 2$ and $N_{2} \leqslant 2$ can exist. They can be written as follows.

$$
N_{1}=N_{2}=N_{1}^{\prime}=N_{2}^{\prime}=0, \quad P=P_{0}=x^{p_{1}} y^{p_{2}}
$$

where

$$
\begin{align*}
& \gamma_{1}=2 p_{2}+1, \quad \gamma_{2}=2 p_{1}+1, \quad E=\frac{1}{2}\left(\omega_{1} \gamma_{2}+\omega_{2} \gamma_{1}\right) \tag{9}\\
& N_{1}=N_{2}^{\prime}=1, \quad N_{2}=N_{1}^{\prime}=0, \\
& P=\left[\left(C_{2}(0)-C_{1}(0)\right) /(4 \omega)+\left(x^{2}-y^{2}\right)\right] P_{0},
\end{align*}
$$

where

$$
\begin{gathered}
\gamma_{1}=2 p_{2}+1, \quad \gamma_{2}=2 p_{1}+1, \quad \omega_{1}=\omega_{2}=\omega, \quad E=\frac{1}{2} \omega\left(\gamma_{1}+\gamma_{2}+4\right) ; \\
N_{1}=N_{2}=1, \quad N_{1}^{\prime}=0, \quad N_{2}^{\prime}=2, \\
P=\left[C_{2}(0) /(4 \eta)-y^{2}\left(x^{2}-y^{2}+2 \omega / \eta\right)\right] P_{0},
\end{gathered}
$$

where

$$
\begin{align*}
& \gamma_{1}=2 p_{2}+5, \quad \gamma_{2}=2 p_{1}+1, \\
& \omega_{1}=\omega_{2}=\omega=\left[\eta\left(C_{2}(1)-C_{1}(0)\right) / 8\right]^{1 / 2}, \quad E=\frac{1}{2} \omega\left(\gamma_{1}+\gamma_{2}+4\right) ; \tag{11a}\\
& N_{1}^{\prime}=N_{2}^{\prime}=1, \quad N_{1}=2, \quad N_{2}=0, \\
& P=\left[C_{1}(0) /(4 \eta)-x^{2}\left(y^{2}-x^{2}+2 \omega / \eta\right)\right] P_{0}, \tag{11b}
\end{align*}
$$

where

$$
\begin{align*}
& \gamma_{1}=2 p_{2}+1, \quad \gamma_{2}=2 p_{1}+5, \\
& \omega_{1}=\omega_{2}=\omega=\left[\left(C_{1}(1)-C_{2}(0)\right) \eta / 8\right]^{1 / 2}, \quad E=\frac{1}{2} \omega\left(\gamma_{1}+\gamma_{2}+4\right) ; \\
& N_{1}^{\prime}=N_{2}=1, \quad N_{1}=N_{2}^{\prime}=2, \\
& \left.P=\left(y^{2}-x^{2}\right)\right)\left[C_{2}(0) /(4 \eta)-(x y)^{2}\right] P_{0}, \tag{12}
\end{align*}
$$

where

$$
\begin{array}{ll}
p_{1}=p_{2}, & \gamma_{1}=\gamma_{2}=2 p_{1}+5, \\
\omega_{1}=\omega_{2}=0, & E=0 .
\end{array}
$$

This solution does not represent a bound state because for $\omega_{i}=0$ the wavefunction $\psi(x, y)$ is not normalisable.

For $N_{1}^{\prime}=N_{2}=0, N_{1}=N_{2}^{\prime}=2$ the solution does not exist.
We obtained a finite class of the solutions of the Schrödinger equation for ACO with Hamiltonian (2), and for one set of the parameters λ_{i}, η we obtained only one state.

Let us consider the interesting case when the following assumption is made: $\omega_{i}^{2}=\eta \gamma_{i}$. Then, the potential of ACO takes the form

$$
V(x, y)=2 \eta(x y)^{2}\left[\nu+\frac{1}{2} \eta\left(x^{2}+y^{2}\right)\right] .
$$

This potential becomes zero on the lines $x=0, y=0$ so it can be supposed that the bound states do not exist since unlimited classical motion along these can occur. The bound states do exist, however, if only $\eta>0$.

When $\omega_{i}^{2}<\eta \gamma_{i}$, we have $\lambda_{i}<0$ and so

$$
\lim _{x^{2} \rightarrow \infty} V(x, 0)=\lim _{y^{2} \rightarrow x} V(0, y)=-\infty,
$$

but in this case also the bound states exist. This unexpected finding can be explained as follows.

The wavepacket localised in the $V(x, y)$ potential well cannot spread to infinity along, let us say, the curve $x=0$, since it must crowd through a gap which in the limit narrows to zero. Indeed,

$$
\lim _{x^{2} \rightarrow \infty} V(x, y)= \begin{cases}0 & \text { for } y=0 \\ \infty & \text { for } y \neq 0\end{cases}
$$

Such a shape of the potential imposes the localisation of the wavefunction and assures its normalisability.

The method used in this work may be straightforwardly employed in obtaining the solutions of type (2) for multidimensional polynomial potentials.

References

Barbanis B 1966 Astron. J. 71415
Bender C M and Wu T T 1973a Phys. Rev. D 83346
-_ 1973b Phys. Rev. D 83366
Bowman J M 1978 J. Chem. Phys. 68608
Carreira L A 1979 in Topics in Current Chemistry ch 1, ed F L Boschke (Berlin: Springer)
Caswell R S and Danos M 1970 J. Math. Phys. 11349
Christoffel K M and Bowman J M 1982 Chem. Phys. Lett. 85220
Cohen M, Greita S and McEachran R P 1979 Chem. Phys. Lett. 60445
Eastes W and Marcus R A 1974 J. Chem. Phys. 614301
Flessas G and Das K 1980 Phys. Lett. 78A 19
Hénon M and Heiles C 1964 Astron. J. 6973
Magyari E 1981 Phys. Lett. 81A 116
Noid D W and Marcus R A 1975 J. Chem. Phys. 622119

- 1977 J. Chem. Phys. 66559

Noid D W, Koszykowski M L and Marcus R A 1979 J. Chem. Phys. 712864

- 1980 J. Chem. Phys. 73391

Singh V, Biswas S N and Datta K 1978 Phys. Rev. D 181901

- 1979 Lett. Math. Phys. 373

Sorbie K S 1976 Molec. Phys. 321577
Sorbie K S and Handy N C 1977 Molec. Phys. 331319
Tobin F L and Bowman J M 1980 Chem. Phys. 47151
Weisman I and Jortner J 1981a Chem. Phys. Lett. 78224
—— 1981b Phys. Lett. A 8355

- 1982a J. Chem. Phys. 771469
-_ 1982b J. Chem. Phys, 771486
Zhi-Ding Q, Xing-Guo Z, Xing-Wen L, Kono H and Lin S H 1982 Molec. Phys. 47713
Znojil M 1981 Lett. Math. Phys. 5405
- 1982 J. Phys. A: Math. Gen. 152111

