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LE'ITER TO THE EDITOR 

A class of exact solutions for anharmonically coupled 
oscillators 

J Makarewicz 
Institute of Chemistry, A Mickiewicz University, 60-780 Poznan, Poland 

Received 11 July 1983 

Abstract. We study the solutions of the two-dimensional Schrodinger equation for anhar- 
monically coupled oscillators. We obtain a finite set of exact solutions of the form 
$(x, y )  =polynomial (x, y )  exp(polynomia1 (x, v ) )  provided that certain constraints on the 
potential parameters are satisfied. 

The anharmonically coupled oscillator (ACO) models are used in studies concerned 
with approximate methods of solving the multidimensional Schrodinger equation. The 
first detailed study of the properties of the perturbation series for the energy of the 
ACO model with the potential V ( x ,  y )  = ~ ( h 1 ~ 2 + h ~ y 2 ) + ~ ( ~ y ) 2 + 5 1 ~ 4 + ~ 2 y 4  was per- 
formed by Bender and Wu (1973a, b). The numerical analysis of the same model 
with ti = 0 is due to Caswell and Danos (1970). They proved the accuracy of the 
Born-Oppenheimer method in the separation of two coupled molecular vibrations. 
The models with coupling terms x y 2  (Hamiltonian of Barbanis (1966)) and x(y2 + vx2) 
(Hamiltonian of HCnon and Heiles (1964)) were considered to establish the accuracy 
of the self-consistent field (Bowman 1978, Cohen et a1 1979, Tobin and Bowman 
1980, Christoffel and Bowman 1982) and adiabatic Born-Oppenheimer method 
(Zhi-Ding et a1 1982). These models were also intensively used to study dynamics 
of the ACO system with semiclassical methods (Eastes and Marcus 1974, Noid and 
Marcus 1975, 1977, Noid et a1 1979, 1980, Sorbie 1976, Sorbie and Handy 1977, 
Weisman and Jortner 1981a, b, 1982a, b). 

The exact solutions of the Schrodinger equation for ACO models could serve as a 
useful device for the testing of practically oriented approximations, but till now such 
solutions have not been presented. 

Recently, only for some anharmonic oscillators such solutions were found of the 
form +(x) = P ( x )  exp(R(x)), where P ( x )  and R ( x )  are polynomials (Singh et a1 1978, 
1979, Flessas and Das 1980, Magyari 1981, Znojil 1981, 1982). 

In this letter we propose the ACO models which have exact solutions of the 
analogous form 

4 4 ,  Y 1 = P(x, Y 1 exp(R (x, Y 1) 
where P (x ,  y )  and R(x,  y )  are polynomials of two variables. We also discuss some 
interesting properties of these solutions. 

We shall be interested in solutions of the Schrodinger equation 

W ( x ,  Y )  -E)+(x ,  y )  = 0 (1) 
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with the Hamiltonian 

2H(x, y )  = -(a2/ax2 +a2/dy2) +A1x2 +A2y2 + ~ V V ( X Y ) ~  + T / ~ ( x ~ ) ’ ( x ’  + y 2 ) .  (2) 

This Hamiltonian is similar to that considered by Caswell and Danos (1970) if v >> 77, 
but is more realistic owing to the inclusion of the higher-order coupling term propor- 
tional to q 2 .  For 77 < O  a potential with this term can have two or four minima. The 
potential with such properties has been used to describe pseudorotation in cyclic 
molecules (Carreira 1979). 

Let us look for the solutions of equation (1) of the form 

CL(X, y 1 = ~ ( x ,  y ) exp[-i(wlx2 + w2y2 + vx2y2)1 (3) 

where 

p ,  = 0(1) for states of even (odd) parity with respect to x or y. We prove that P(x,  y )  
is a polynomial of the x and y variables if certain constraints on the parameters U,, 

A ,  and 77 are satisfied. 
Substituting equation (3) into (1) we obtain difference equations for the unknown 

coefficients an,,n2 which for v = w 1  + w 2  take the simple form 

(4 )  an l -~ ,n2Bi (n2)  + a n l , n 2 - 1 B z ( n l )  + a n , + i , n 2 C 1 ( n ~ )  +an l ,nz+~Cz(nz )  = A n l . n , a n l , n 2  

where 

B,(n,) = .I[% - (4% +2P, + 1)1, 

C,m) = (2n, + P I  + 2 ) ( 2 n 1  + p j  + 11, 

A,,,, ,  = (4n + 2p1+ l ) w l +  (4n2  + 2p2 + 1)w2 - 2 E ,  

y l  = (U? - A , ) / V .  

i f j = 1 , 2 ,  ( 5 a )  

( 5 6 )  

( 5 c )  

The P(x, y )  is a polynomial of Nlth degree with respect to x and N; th degree with 
respect to y if there exist such N2 and N; that U N , , ~ ,  f 0 and u ~ ~ . ~ ~  f 0 and a,,,,, = 0 
for every n l  >NI and n 2  > Ni. 

Let us choose the index N2 for which a N I , ~ ,  Z 0. In reality only one such N2 exists, 
for if there is another f i 2  f N2, then taking in equation (4) ( n l ,  n 2 )  = (N1 + 1, N2) we 
would obtain the condition 

ary,.~$31(N2) = 0 

which means 

Bi(N2) = 0,  

and taking ( n l ,  n 2 )  = (N1 + 1, f i 2 )  we would obtain 

aiV1,*,B1(fi2) = 0 

Bl(fi2) = 0. 

imp1 yi n g 

It is clear now that equations (6a,  b )  can be both fulfilled if and only if N2 = N2, so 
we draw the conclusion that only one N2 exists. From this fact we can easily deduce 
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that non-zero coefficients with the maximum n l  for a given N 2 f  k are 

U N ,  -k ,Nz+k  for k = 0 , 1 , .  . . , N ;  - N 2 ,  

U N ,  -k.N2-k for k = 0 , 1 , .  . . , N2.  

In a similar way we prove that there exists only one index N ;  for which ) = 
0 and B 2 ( N \  ) = 0. The non-zero coefficients with the maximum n 2  for a given N ;  f k 
are 

a N i + k , N i - k  

a N i - k , N i  - k  f o r k = 0 , 1 ,  . . . ,  N ; .  

fo rk  =0 ,  1 , .  . . , N l - N \ ,  

To make our considerations easily understandable we present in figure 1 the graph 
of the polynomial P in which open (full) circles denote zero (non-zero) u, ,~ , , ,~  
coefficients. The crossed circles stand for the critical coefficients u N , , N 2  and uNin; 
which fulfil the equations (see equations (4)) 

A N I . N ~ ~ N ~ . N ~  = 0, A N ] . N ~  = 0 ,  

A N ; , N ; Q N ~ . N ~ = ~ ,  A N ~ . N ; = ~ .  
(7) 

Figure 1. The graph of the polynomial P ( x ,  y )  and the path generating all the points of 
an.m f 0.  

Relations (7 )  impose the constraints on the energy E and frequencies w l ,  w 2 ,  thus 
providing for the existence of the solutions of equations (4). Let us note that the 
equations 

Bi(N2) = B z ( N ;  ) 10 

relate the parameters A, and 77 and the frequencies w ,  through the two conditions 

71 = 4 N 2 + 2 p 2 + 1 ,  Y2=4N;  +2P1+l1 .  (8) 

Thus, only one degree of freedom of these parameters remains. 
Equations (4) can now be easily solved with the use of the topology of the graph 

P in the following way. Let us determine a path in the graph such that starting from 
u N 1 - N 2 + 1 , 0  and moving along the path we generate subsequently, from recurrence 
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relations (4), all the points of an,,,, # O .  Instead of describing verbally an algorithm 
defining this path we present it in  figure 1, from which we can clearly see that it can 
always be found. All points lying on the path are uniquely determined by U N , - N ~ , O .  

However, f points ( f  = NI + N2 - 1 for Ni > 2) exist which do not lie on the path, 
which means that in general f equations from equations (4) will not be fulfilled. 

The proper choice of Ai, q parameters can only guarantee that one of thef equations 
will be fulfilled since there is only one degree of freedom in the parametric space. So, 
the necessary but not sufficient condition for the existence of non-trivial solutions of 
equations (4) is f s 1. This condition means that only the polynomials for which NI S 2 
and N2 < 2 can exist. They can be written as follows. 

where 

y1=2p2+1, Y2  = 2p1+ 1, (9) 

This solution does not represent a bound state because for w ,  = 0 the wavefunction 
4(x,  y )  is not normalisable. 

For N; = N2 = 0, NI = N; = 2 the solution does not exist. 
We obtained a finite class of the solutions of the Schrodinger equation for ACO 

with Hamiltonian (2), and for one set of the parameters A, ,  q we obtained only one state. 
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Let us consider the interesting case when the following assumption is made: 
w f  = qy,. Then, the potential of ACO takes the form 

V(x ,  y )  = 2 q ( x y ) 2 [ v  + f q ( x 2 + y 2 ) 1 .  

This potential becomes zero on the lines x = 0, y = 0 so it can be supposed that the 
bound states do not exist since unlimited classical motion along these can occur. The 
bound states do exist, however, if only q > 0. 

When w f  < qy,, we have A ,  < 0 and so 

lim V ( x , O ) =  ljm V(O,y)=-CO, 
X 2 4 C  1 -= 

but in  this case also the bound states exist. This unexpected finding can be explained 
as follows. 

The wavepacket localised in the V(x ,  y )  potential well cannot spread to infinity 
along, let us say, the curve x = 0, since it must crowd through a gap which in the limit 
narrows to zero. Indeed, 

for y = 0, 1: fory # O .  
lim V ( x ,  y )  = 

X 2 + m  

Such a shape of the potential imposes the localisation of the wavefunction and assures 
its normalisability. 

The method used in this work may be straightforwardly employed in obtaining the 
solutions of type (2) for mu!tidimensional polynomial potentials. 
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